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Scaling and Critical Phenomena in a Cellular 
Automaton Slider-Block Model for Earthquakes 
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The dynamics of a general class of two-dimensional cellular automaton 
slider-block models of earthquake faults is studied as a function of the failure 
rules that determine slip and the nature of the failure threshold. Scaling proper- 
ties of clusters of failed sites imply the existence of a mean-field spinodal line in 
systems with spatially random failure thresholds, whereas spatially uniform 
failure thresholds produce behavior reminiscent of self-organized critical 
behavior. This model can describe several classes of faults, ranging from those 
that only exhibit creep to those that produce large events. 
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phenomena. 

Ear thquakes  are physical processes exhibiting a wealth of complex 
phenomena,  including space-time clustering of events, (~) scaling, (2) and 
migrat ion of  activity along fault systems. (~'3) A number  of years ago, 
Burridge and Knopof f  (4) (BK) proposed a model  useful in understanding 
some of  these observations. The BK model  consists of a network of blocks 
coupled by springs with force constants  K c  sliding on a frictional surface. 
If  the magni tude of the force vector ~ on block i is increased to the point  
where it exceeds a prescribed threshold value ~v, the block slides or  jumps  
a distance Ui in the direction of  the force, thereby reducing the force on 
that block to a residual value ~R. Each block that  slides may induce failure 
of  neighboring blocks by means of the coupling through the springs, 
leading to clusters of failed blocks. In the classical BK model, massive 
blocks were used, together with a particular form of velocity-weakening 
friction, thereby leading to a series of  nonlinear  differential equations to be 
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solved for the block positions. A cellular automaton version of this model 
was subsequently introduced (5) in which the blocks are taken to be 
massless, and simple jump rules are introduced using elementary concepts 
of "static" and "dynamic" friction. 

The dynamics of these models has been the subject of considerable 
interest, initially among seismologists ~4'5) and more recently in the con- 
densed matter community. (6) For the most part the latter work has studied 
the behavior of massive blocks subject to a velocity-weakening friction 
force and has emphasized the similarities with the self-organized criticality 
(SOC) model of sandpiles. (7) However, there is considerable evidence (6's'9) 
that the SOC paradigm is not rich enough to describe all the phenomena 
observed in earthquakes. In particular, the existence of limit cycles with the 
appearance of earthquakes of a characteristic size for a given fault system 
and the existence of great events as well as creep that cannot be described 
with scaling indicate that SOC is at best a partial description of the 
earthquake phenomenon. 

For example, there exist segments of fault displaying both a scaling 
range of minor events up to some small limiting value, and events in 
which the entire segment fails as a unit. These large events are called 
"characteristic earthquakes." Examples include the Park field section of the 
San Andreas fault and the segment of subduction zone that failed in the 
great 1964 Prince William Sound, Alaska, earthquake. (2) We argue that 
the minor events may be analogous to spinodal fluctuations, whereas the 
characteristic earthquakes are analogous to nucleation events. Events 
analogous to first-order transitions, for which evidence exists in real 
sandpile experiments ~1~ as well, are not predicted by SOC theories. 

In this work we address these problems by considering a slider-block 
model that focuses attention on the influence of the failure mechanism and 
the external loading. Our main result is that the statistical nature of the 
observed phenomena is strongly influenced by the loading, the form of the 
failure threshold, and the mechanism for energy dissipation. In particular 
we find that failure thresholds that have a spatially constant value 
apparently leads to phenomena that appear to be SOC for short times, 
while spatially varying thresholds, whether random, fractal, or some other 
configuration, lead to the existence of critical points that bear a strong 
resemblance to  mean-field spinodals. This dependence is in better quali- 
tative agreement with the data on earthquakes, which show much more 
varied behavior than that analogous to SOC. 

In our slider-block model the displacement Ui at a time t + 1 is given 
by 

Ui(t + 1) = U,(t) + JE(,(t)] O[(i(t ) - (v] (1) 
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where O is the Heaviside function and J[~i( t ) ]  specifies the size of the 
jump if ~ > fly. The force on each block is 

~i (t) = ~ T o Uj + Qi (t) (2) 
U 

where T o. includes both self-interactions [Tii] and nearest neighbor terms. 
The term Qi(t) specifies the external driving force. This model is quite 
general and is similar in spirit to one described by Feder and Feder. ~6) 

We are concerned with a system driven continually toward failure by 
the applied force Q~(t) corresponding to a loader spring with a force con- 
stant KL. The loader spring couples each block to a plate that is displaced 
forward an amount Vxl at fixed time intervals A >> 1, thereby stretching the 
spring. Consequently, 

Qi(t)=KL VA [ ~  O[ t -n~] ]  (3) 

In this work we will restrict our consideration to systems in d = 2 and 
adopt the values Ti~=-[KL+4Kc]=-5  and T u = K c = l  for i and j 
nearest neighbors. Clearly ~j To.=--KL. We use the jump function 
J [ ~ ( t ) ]  = [~ ( t )  - ~R]/K, where K= KL + 4Kc. 

The evolution of the system is as follows: We move the loader plate a 
distance VA and calculate the force on each block. Those blocks that have 
~i>~v are then moved an amount Jiffy] and the forces on each block 
recalculated. Blocks that have f f~>~  are again moved and the forces 
recalculated. This process is repeated until no block has a force that 
exceeds the threshold. At this point the loader plate is moved again and the 
process repeats. We analyze the properties of clusters of failed sites. A 
cluster is defined as a group of nearest neighbor sites that fail during updat- 
ing following a single increment of the loader plate. Each block is counted 
only once irrespective of the number of times it failed during the updating 
following a single loader plate move. All simulations carried out in this 
paper were started from random initial block positions. Data were taken 
only after several tens of thousands of loader updates had occurred 
(typically a half million clusters), to eliminate effects associated with system 
transients. Blocks on the boundaries of the network were connected to the 
loader plate as well as to their three (edge blocks) or two (corner blocks) 
nearest neighbors. Other boundary conditions are possible, including 
periodic or fixed edge blocks. 

First we considered the model with a flat (spatially uniform) failure 
threshold ~v = ~v for all i. We measured the density of clusters with s failure 
sites, sn(s), as a function of the "velocity" V. For  V= 0.1 and V= 10 we 
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Fig. 1. Log-log plot of the density of clusters of size s, sn(s), vs. s for two velocities in a 
system with a flat failure threshold. The slope is consistent with a T ~ 2. The lack of 
dependence of the slopes on V indicates SOC. 

found (Fig. 1) that sn(s)~ s I ,r with T ~ 2. It  appears from these data that 
for the constant failure threshold, sn(s) is independent of V, i.e., the system 
seems to exhibit SOC. We have also performed simulations of the same 
model with K c = 2 5  , K L =  1 and found SOC-like behavior with z,-~2.5 
which is mean field. (1~) In this regard (Kc/KL) 1/2 appears to play the ro le  
of the interaction range used in thermal models of phase transitions. (12) If 
our interpretation is correct, the correlation length is r  w2 
( V c -  V) -v. 

In our second set of runs for this model we a l t e r ed  the failure 
threshold. The reason for this change is that the surfaces of faults are 
rough, and can only be in intermittant contact. A more accurate represen- 
tation of a fault therefore is a spatially nonuniform threshold. We used 
both a threshold in which the ~v were generated at random at each site and 
a fractal threshold in which the ~v are thought of as the z coordinates of 
the points on a surface, measured from the x-y plane, with a fractal dimen- 
sion of 2.2. The results for both thresholds were similar (Fig. 2). The data 
of Fig. 2 taken with the random threshold clearly show a strong nonlinear 
regime for V =  8. As the velocity increases the plot becomes more linear, 
i.e., critical. It appears that the random failure threshold has altered the 
apparent  SOC behavior obtained with flat thresholds to one with a critical 
point at Vc-- 19. The slope of the line at Vc indicates that the exponent 

~ 2.5. The fractal failure threshold gave a similar value for T with Vc = 14. 
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Fig. 2. L o g - l o g  plot  of sn(s) vs. s for a sys tem wi th  a failure threshold  tha t  is a r a n d o m  

number  un i fo rmly  d is t r ibuted  between 50 and  350. The veloci ty dependence  indicates  cri t ical  

p h e n o m e n a  ra ther  than  SOC. The slope of the curve  at  V =  Vc = 8, which was ob ta ined  from 
3.0 x 106 clusters, is �9 - 1 ~ 1.4, and  at  V = Vc = 20, us ing 1.9 x 106 clusters, is ~ - 1 ~ 1.5. 

In order to understand this phenomenon, it is first useful to note 
that the value of ~ = 2.5 is characteristic of mean-field percolation and 
spinodals. (12) Our interpretation of these results is that the critical point in 
the random threshold model is a spinodal. As the randomness of the failure 
threshold is reduced, the line of spinodal singularities approaches an SOC 
point. In particular, the threshold randomness is a relevant scaling field 
with respect to the SOC line, whereas the "velocity" V is the relevant 
scaling field with respect to the spinodal line. 

On a microscopic scale the random nature of the threshold appears to 
limit the size of most clusters grown from the initial failed sites or seeds. At 
the velocities studied in this work the density of seeds is small compared to 
the random site percolation threshold, hence infinite clusters are formed via 
a coalescence of several smaller clusters which are themselves composed of 
many blocks. However, coalescence is rare due to the fact that individual 
cluster perimeters are composed of blocks that have recently failed and 
hence have a small stress near the residual value. Moreover, the clusters are 
bordered by blocks that have not failed and hence have, in general, a high 
failure threshold. These conditions combine to make the probability of two 
clusters coalescing at a particular site rare. Due to the individual cluster 
size, however, the number of potential coalescing or binding sites is large. 
This morphology is similar to that of the gelation of large, branched 
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Fig. 3. Log-log plot of sn(s) vs. s for a system with the same failure threshold as Fig. 2. The 
measurement was made for 10 6 clusters. The velocity is considerably higher than Vc and 
"infinite clusters" frequently occur. 

polymers, (13) which also has mean-field percolation exponents. To test this 
hypothesis, we have measured the number of initiator sites ni(s ) in clusters 
of size s and found (14) that n,(s)/s ~ 0 as s ~ ~ .  

As further evidence for the interpretation of the critical point as a 
spinodal we find that for velocities larger than the critical velocity Vc there 
is an instability similar to continuous ordering in thermal phase trans- 
itions uS) and for V<  Vc we have an indication of nucleation phenomena. 
Thus the velocity acts as a scaling field. Moreover, measurements (Fig. 4) 
indicate that correlation functions have the correct asymptotic form, (13) 
e-R/r ~ +", with q ~ 0. Data obtained for the dependence of the corre- 
lation length on the scaling field V c - V  are less convincing, but seem 
to approach power laws with v ~0.5 as expected. These results will be 
discussed in a future publication. (a4) It is also important to note that the 
phenomena seen in this model are strongly dependent on the velocity. For  
the limit V ~ 0 ,  where there is only one initiator, (6) there is evidently no 
spinodal singularity. 

Finally, we have found that for fixed V, increasing Kc/KL produces a 
transition in model behavior from "macroscopic stable sliding" to "macro- 
scopic stick slip." Behavior of this type occurs in laboratory experiments u6) 
as machine stiffness K,, is decreased. Assuming that Km in the laboratory 
plays the same role as K/_ in the model, this effect is then evidently a 
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consequence of correlation length ~ ~ (Kc/KL) 1/2 (V c -  V)-" growing to a 
magnitude that exceeds the system size L. 

In summary: We have investigated a cellular automaton slider-block 
model with a spatially varying failure threshold that is a considerably more 
realistic model for an earthquake fault than the spatially uniform threshold 
models which appear to exhibit SOC. In contrast to the spatially uniform 
threshold, we obtain critical rather than SOC-like phenomena. As the 
dispersion in the failure threshold decreases, we apparently cross over to 
the SOC-like regime. (14) This result is significant for understanding earth- 
quake faults, as it allows a variety of behavior, depending on the dispersion 
of the failure thresholds and the plate velocity relative to the critical value. 
Due to the existence of a spinodal and the implied metastability, there 
should exist rare nucleation events that are quite large. These events have 
been seen. (14) Finally, the dispersion in the failure threshold brings the 
velocity into play as a relevant scaling field. 
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